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A METHOD OF NUMERICAL SOLUTION OF ONE-
DIMENSIONAL STEFAN PROBLEMS OF TWO TYPES

G. N. Vlasichev UDC 621.039.586:536.42:518.6

A one-dimensional conjugate problem of heat transfer with phase transitions of two types ( with interfaces of
two phases and with a two-phase zone) is solved by a finite difference method based on the general initial
heat conduction equation written with the Dirac delta function. A calculating scheme is developed using a
nonuniform spatial net with floating nodes and the method of oppositely directed pivots.

The consideration of contingent emergencies of nuclear reactors with melting of the active zone necessitates
mathematical modeling of the heat transfer with phase transitions in the reactor materials. As a rule, one has to
solve a multifront problem, viz., a conjugate problem of heat transfer with the presence of several fixed and moving
boundaries.

A change in the state of aggregation is accompanied, strictly speaking, by the presence of a buffer zone
between two adjacent phases with a temperature drop equal to the drop between the liquids and solidus lines. Such
a two-phase zone, consisting partly of a liquid phase and partly of a solid phase, occupies a significant volume
fraction of the medium under certain conditions (for example, with radiative transfer within the substance volume
[1] or in solidification of a binary melt [2]). A vast two-phase zone also arises when there is an internal heat
release distributed over the medium volume, for example, in the fuel core of a heat-releasing element (fuel element)
of a nuclear reactor. A two-phase layer narrows in the limiting case, and then the problem may be reduced to a
classical one that assumes the presence of a phase front between zones with different states of aggregation.

A good deal of attention is given in the literature to the methods of solving the Stefan problem in a classical
statement. For individual simple cases, there are exact analytic solutions, for example, that reported in [3, 4], and
also approximate analytic solutions, for example, those presented in [3]. The greatest development was extended
to numerical methods of solving the Stefan problems, chiefly as applied to problems of permafrost science, geology,
and metallurgy. Some methods of numerical solution are described in [5]. Most familiar numerical methods are
suitable for simple problems characterized by the presence of a single interface of two phases, including the solution
described in [6]. Work [7] proposed a method of numerical solution of multifront one-dimensional Stefan
problems. There are also publications concerning the solution of a nontraditional Stefan problem [1, 2]. One of the
methods of solution with a strongly discontinuous dependence of the specific-heat function in the vicinity of the
two-phase zone, satisfying the energy balance condition, is used in [8]. There are numerical solutions of
multidimensional problems, for example, of a problem with a flat oblique front [4]. Numerical methods for solving
problems of heat transfer with phase transitions are described in [9].

The presence of moving boundaries requires the use of appropriate calculating schemes. The order of
accuracy of a scheme with a uniform spatial net and a fixed temporal step decreases with the appearance of a moving
discontinuity [4]. For improvement of the calculation accuracy the spatial net must be more close-meshed in this
case. A calculating scheme with a variable temporal step and a boundary displacement by one spatial node of a
uniform net is more workable for Stefan problems [5, 10]. For a multifront problem, however, this scheme loses
its advantage to some extent. In this sense a calculating scheme using fractional spatial steps for the displacement

" of the phase front at each temporal step (which is fixed) must be more suitable [5]. Here, the coordinate of the
moving boundary does not coincide with the location of any node of the spatial net. Some numerical solutions, for

Nizhnii Novgorod Polytechnic Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 65, No. 3,
pp. 332-340, September, 1993. Original article submitted February 10, 1992,

896 1062-0125/93/6503-0896$12.50 ©1994 Plenum Publishing Corporation



example, those reported in [6, 7], employ calculating nets containing, apart from fixed nodes, moving (floating)
ones, whose coordinates correspond to the locations of phase fronts. Such a method admits any number of moving
boundaries without a decrease in the approximation accuracy.

The current study suggests a numerical method for a one-dimensional conjugate (multizonal) problem of
heat transfer with phase transitions of two types (with interfaces of two phases and with a two-phase zone). The
problem is solved in a formulation generalized for Cartesian, cylindrical, and spherical coordinate systems. The
number of calculation regions is arbitrary, with any types of boundary conditions (BC), and several calculating
models are used for each of four BC kinds (among them are those specific for the range of problems considered).
In each of the regions, the movement of both the interfaces of two phases and the boundaries of a two-phase zone
(of one or simultaneously two boundaries) may be examined. The number of interfaces, including those within one
calculated region, is not limited (the problem is multifront). Such a moving front can also be situated on the
boundary of the calculation region, for example, in melting or solidification at the interface of a solid and a moving
liquid mass. The initial equation is solved numerically using a finite difference method with the application of a
nonuniform spatial net with floating nodes, as in the solution of [6]. In the solution put forward in the present
work a discrete analog, describing heat transfer inside single-phase zones or a two-phase zone and the movement
of clearly separable fronts (of the interfaces of two phases or the boundaries of a two-phase zone), is obtained from
one initial equation written, similarly to [4], with the Dirac delta function. Furthermore, in the present solution
the method of oppositely directed pivots [11] is used.

The heat transfer within single-phase zones is described in a one-dimensional formulation, common to the
three coordinate systems, by the following heat conduction equation:
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where k = 0 in a Cartesian coordinate system, k = 1 in a cylindrical, and k = 2 in a spherical.

The temperature at the interface is equal to the temperature of the phase transition, and the heat fluxes
are discontinuous. The conditions at such a classical interface (the Stefan conditions) in a one-dimensional case
have the form
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Having introduced the Dirac delta function with the aim of defining the heat transfer inside a continuous
medium and the movement of several moving interfaces by one common equation we write the heat conduction
equation (1) as
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On the left side of Eq. (3) a plus sign is written for dT(r, t)/dr < 0 and a minus sign in the opposite case.
Clearly, when the coordinate r does not coincide with the coordinate of any interface (yp), we have all zero terms
of the latter equation that incorporate the delta function; here Eq. (3) reduces to Eq. (1). At the p-th moving
interface with a temperature TP, we obtain the corresponding nonzero term (the remaining ones, if there are several
such fronts, are zero at this point); as a result, the equation will express the law of motion of the p-th interface.

The heat transfer in the case with a two-phase zone is, as a rule, described approximately by a heat
conduction equation of type (1) but with a strongly discontinuous dependence of the specific heat at its boundaries.

897



Here, the value of the specific heat inside the zone includes the latent heat of a phase transition such as, for
example, that in [12]:

Cs, = Rl AT + (e (Trm) + ¢, (T + AT)Y2. @

The heat fluxes on moving boundaries of the two-phase zone are constant.

As the initial equation for obtaining a discrete analog, common to the two types of phase transitions
considered, the current work uses Eq. (3), in which the terms containing a delta function with the coefficients Ry,
relate to classical interfaces, whereas, for a two-phase zone, the latent heat of the phase transition is accounted for
in the specific heat defined by Eq. (4). A numerical solution is obtained without preliminary smoothing of the delta
function in a certain temperature range, as was done in the approximate solution [4] for the classical Stefan
problem.

A conservative finite difference scheme (discrete analog) for a problem of heat conduction with
discontinuous coefficients can be obtained by an integro-interpolation method (balance method) [4]. A purely
implicit scheme that is absolutely stable [11, 13]is used. A discrete analog of the generalized equation (3) that is
obtained for a nonuniform spatial net using piecewise-constant temperature profiles on control segments is of the

form
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In this equation, R,im = RP and ri(th) = y%,“, if y%, = ri(ty)) forp=1, ...,m). With no interface inside the
considered i-th control segment (y,#r;), Rl = 0in Eq. (), i.e., the term with the coefficient Ry, is absent. When
the interface or one of the boundaries of the two-phase zone is determined in the i-th control segment, the
nonstationary term will tend to zero, if its coordinate is chosen correctly.

For control segments with moving boundaries, the specific heat is defined as
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where cf V= o, T§+1, dif L= c(ri+,TJ;+l), and the coefficients p;_(k) and ¢;+(k) are determined from the

corresponding equations.

Alternatively, the discrete analog (5) of the heat conduction equation is written in the form [4]
/4—1 j=+-1
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the coefficients of which are defined as
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This discrete analog is valid for all nodes of the spatial net, both fixed and moving (a uniform scheme).
Its distinctive feature is primarily that, in the expression for one of its coefficients (F;) there arises an additional
term accounting for the energy consumption/liberation on the phase transition localized at the i-th node.

The boundary conditions of the calculation regions are written in discrete form as [11]
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where the coefficients k1, v1, and &, v;, are determined from equations appropriate to the kind of BC.
A combination of the pivot and iteration methods [11 ] is employed to solve the nonlinear system of algebraic

equations (7) and (9). The methods of right and left pivots are used [11 ], in which the temperatures of neighboring
nodes are related by the recursive equations

T =y T+ B TH = a7 4+ Bina, ao
where the pivot coefficients «; and f; are determined from the corresponding equations. In the present numerical
solution for the problem of phase transitions of both types, the method of oppositely directed pivots [11] is used,

for which the right and left pivots are performed relative to the moving interfaces. The expression for the
temperature on moving boundaries is obtained from discrete analog (7) and pivot equations (10) and has the form
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The coordinates of phase fronts are found using an iteration method. Here, the coordinate of the moving
boundary is redetermined (inside a cycle of the above-mentioned iterations) several times until the required
difference of the temperature, found using Eq. (11), from that specified for this boundary is attained. When the
second moving boundary appears in the calculation region, such iterations are repeated alternately for both fronts,
whereupon the temperatures (starting from the second front) at the remaining nodes of the spatial net, including
those on the first moving boundary, are calculated using Eq. (10). Because both expression (11) and the coefficients
of the pivot equation are obtained in the present solution from the common initial equation (7) that takes into
account the latent heat of phase transitions at the interfacial nodes of the spatial net, the interfacial temperatures
calculated from these expressions will not differ, which ensures convergence of the iteration process.

The presented algorithm of numerical solution for the conjugate problem of heat conduction with phase
transitions of two types is realized in the TRAMS computation program in the FORTRAN langunage for the ES
computer.

For testing the accuracy of the numerical method, the results computed by the TRAMS program are
compared with the predictions from the exact analytic solution. The solution for the classical self-similar problem
of freezing of moist ground (a semi-infinite medium with the surface BC of the 1st kind), reported in [3], defines
the law of motion of the liquid-solid interface as y = yvt, where y is a constant, whose value is determined by the
relation

v
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TABLE 1. Coordinates of the Solid-Liquid Interfaces in a Steel Plate for a Self-Similar Problem

1, sec 1 2 3 4 5
0.25760 0.36430 0.44617 0.51520 0.57601
_ (8]
y, em (To=1540"C) 0.25430 0.36303 0.51681 0.51660 0.57824
0.10131 0.14320 0.17548 0.20262 0.22654
_ 0
y, em (To=350°C) 0.10370 0.14597 0.17788 0.20545 0.22038

Note: The upper value pertains to the exact solution, and the lower value, to the numerical.

TABLE 2. Temperatures at the Boundaries of a Cylindrical Element at the Instant the Movement of the Second Front
Terminates

AT, °C 40 50 100 200 300

Trgs °C 2081.5 2988.8 3023.5 3100.6 3184.8
1 2993.6 3000.7 3033.4 3107.2 3189.1

Ty . °C 2890.4 2900.6 2950.3 3050.2 3150.4
2> 2883.5 2895.1 2945.3 3047.1 3148.6

Note: The upper value pertains to the calculation with two moving fronts, and the lower value, to the control
calculation.
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where ® is the error integral.

For test calculations, we selected a problem of melting of a semi-infinite medium at a constant higher
temperature on the finite boundary that has the same analytic solution. In this case, the constant y is determined
by a relation differing from Eq. (12) only by the sign of the right side.

Table 1 gives results calculated from the exact and numerical solutions for two cases: 1) the initial
temperature of the melted material (a steel plate) is equal to the melting temperature (Tg = Tp) and 2) the initial
temperature of the plate is below the melting temperature (Tg = 350°C). In the first case, the temperature in the
solid zone does not change and the law of motion of a phase front in a semi-infinite medium is valid (up to plate
melting) also for a medium of any finite dimension. In the second case, there is no effect of the finite dimension
of a solid layer until the temperature on the outer boundary starts rising. The following thermophysical properties
of steel are assumed: Ay, = 10 W/ (m-deg); s = 30 W/ (m-deg); a;, = 1.85- 1076 m2/sec; a,=5.56- 107° mz/sec; Tm
= 1540°C; and Ry, = 21-10% J/(m®-sec). The boundary temperature is T. = 2850°C. With such parameters, the
following constants of the exact solution are obtained: 1) y = 0.2576 and 2) y = 0.10131. The initial step of the
spatial net in the numerical solution is h = 0.05 c¢m, the temporal step is = 0.1 sec, and the accuracy of the
temperature calculation at the net nodes is 1078, It is evident from the table that the results of numerical and
analytic solutions coincide with a precision of two significant figures. The coordinate of the solid-liquid interface
at each temporal step is found in a smaller number of iterations than with the method, in which the law of motion
of the interface is expressed by a discrete analog of Stefan’s condition [6]. Convergence of the iteration process is
improved due to the influence of the nonstationary term of the heat conduction equation, from which expression
(7) with coefficients (8) is derived.

To check the accuracy of the numerical method on a problem with two concurrently moving boundaries of
a two-phase zone, we calculated the temperature fields in a cylindrical element (the core of a fuel element 5.9 mm
in diameter [14] with an inner axial opening 2 mm in diameter) under an adiabatic condition on the surface. In
the calculations we adopted: gy = 2.06-10% kW/m?, Ag = 2.9 W/(m-deg); cg = 6.43- 108 J/(m3-deg); and Ty =
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Fig. 1. Times of characteristic processes along the height of the core starting
from the blocking instant of the emergency fuel assembly: 1) and 2) beginning
and termination of sodium evaporation, respectively; 3) and 4) beginning and
termination of melting of the fuel element shell; 5) and 6) beginning and
termination of motion of the boundary between a solid phase and a two-phase
zone in the fuel core; 7) and 8) beginning and termination of motion of the
boundary between a two-phase zone and a liquid phase. t, sec; Z, m.

Fig. 2. Depth of sodium evaporation and of melting of a breeder material by
a heat-releasing fuel mass: 1) depth of sodium evaporation, 2) melting depth
of the conversion zone.

2850°C. The calculations were performed at zero latent heat of melting in order to compare their results with
predictions without moving boundaries. Here, the thermophysical properties in the liquid and two-phase zones were
assumed equal to those in the solid zone. Table 2 gives the calculated results as functions of the temperature drop
in the two-phase zone AT. The temperatures at the instant the motion of the second moving boundary terminates,
which are obtained from such calculations with tracing of the motion of two isotherms and from test calculations
only with fixed nodes of the spatial net, are close to one another. The difference in final values of the temperature
is no greater than 0.4%,.

Using the TRAMS program, the emergency processes with melting of the materials of the core of a fast
reactor were calculated. Here, the specific conditions of the processes considered were taken into account in special
calculation modules attached to the above program.

Figure ! shows the calculated results for melting of the most thermally stressed fuel element at the rated
power with sudden blocking of the flow section for the sodium coolant in a separate fuel assembly. The radial
temperature distribution and the coordinates of the moving phase boundaries in the fuel core, the steel shell, and
the sodium film, surrounding the fuel element for some time after the onset of boiling, were calculated for several
cross sections of the fuel element from the top to the bottom of the active section. Taking into account the significant
length of the fuel element compared to its diameter, it is possible to disregard axial heat transfer from the center
with maximum heat release to the ends of the fuel element, i.e., sufficient computational accuracy can be obtained
using a one-dimensional program. This example contains the two indicated types of phase transitions, viz.,
formation of a two-phase zone in the fuel core with internal heat release distributed over its volume and classical
motion of a solid-liquid interface in the steel shell. These materials and the liquid sodium film are separated into
three individual calculation regions. For the sodium film, on the assumption that there is diffusion of vapor forming
in it to a bubble surrounding the film a model with the phase front on the inner film surface with ideal contact with
the shell is adopted. The times of sodium evaporation and of melting of the shell and the fuel core of the fuel
element are obtained from calculations. [t is found that, from the onset of fuel melting, the boundary between the
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solid material and the two-phase zone rapidly reaches the outer boundary of the core and during most of the time
of melting of the fuel core the two-phase zone occupies its entire cross section.

As an example of the calculation with two classical fronts moving concurrently in a single (as distinct from
the previous example) calculation region, we chose material melting beneath the core, melied by a heat-releasing
fuel mass. The first layer of such materials is a lower end shield, which is an extension of the core, with the only
difference that a shield in the fuel elements contains a breeder material with a considerably smaller heat release.
In calculations of the temperature distribution and the axial coordinates of the interface, this layer is regarded as
a porous medium with parallel conductance of its constituents. Figure 2 depicts the interface coordinates in the
shield as functions of time. One of the moving boundaries is the melting boundary of the breeder material. The
fuel of the core is assumed here to expel the melting underlying material. In this case, the indicated phase boundary
coincides with the surface of the calculation region. The second, from the top, moving front is the boundary of
sodium evaporation moving as the fuel melt shifts a somewhat below the first front. This boundary separates a zone
with a fairly high effective thermal conductivity lo = 30 W/(m-deg) and a zone with a much lower thermal
conductivity Aef = 7 W/ (m-deg). The basic calculated result, viz., the time of fuel movement to the shield bottom,
depends substantially on whether this factor is taken into consideration.

Thus, the devised general method of numerical solution of problems of heat conduction with phase
transitions of two types provides sufficient computational accuracy. The program of computerized predictions, set
up on its basis, can be utilized to calculate emergency processes with material melting in nuclear reactors.

NOTATION

r, coordinate; t, time; T, temperature; vy, interface coordinate; A, thermal conductivity; c, specific heat per
unit volume; a, thermal diffusivity; Ty, melting temperature; Ry, latent heat of melting per unit volume; AT,
temperature drop in the two-phase zone; gy, specific heat release (per unit volume); h, spatial step of the calculation
net; 7, temporal step. Subscripts and superscripts: L, liquid phase; S, solid phase; SL, two-phase zone; p, number
of the interface in the calculation region; i, number of the node of the spatial net; j, number of the temporal step;
N; and Nj, number of the node of the spatial net located on the left or right boundary of the calculation region,
respectively.
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